While most numbers lead anonymous lives away from the mathematical spotlight, eiπ occupies hallowed ground. Douglas Hofstadter writes that when he first saw the statement eiπ = −1, “. . . perhaps at age 12 or so, it seemed truly magical, almost other-worldly.”
This past semester, I taught a geometry course for teachers at City College here in New York. As you might expect, Sketchpad figured heavily in the course contents. But unlike other semesters when desktop Sketchpad was my tool of choice, this time, I took the plunge and limited myself to Web Sketchpad.
This post presents virtual dances based on geometric transformations. As a penguin travels around a polygon, you, as a frog, must match its movements, but with the added challenge of dancing as a reflection, rotation, or dilation of the penguin’s path.
In geometry, we learn that if we erect squares on the legs of a right triangle, the sum of their areas is equal to the area of the square on the triangle's hypotenuse. This is visual way to conceptualize the Pythagorean Theorem. But now consider the image below that shows a bust of … Continue Reading ››
I was happy to collaborate on this blog post with Dr. Stavroula Patsiomitou, a researcher at the Ministry of Education and Religious Affairs in Greece. Dr. Patsiomitou received her PhD from the University of Ioannina and has written extensively about the field of dynamic geometry environments, including Sketchpad and Web Sketchpad. … Continue Reading ››
In how many ways can you use dynamic geometry software to build a rhombus that stays a rhombus when its vertices are dragged? This challenge, a mainstay of Sketchpad workshops, invariably leads to great discussions because there are a multitude of ways to construct a rhombus, with each method highlighting different mathematical properties … Continue Reading ››