Arithmetic operations in a Physical context.

As an example, consider how we do many physical actions which are then
abstracted from their physical context by formal arithmetic operations.
Sometimes we condense a rich variety of activitics into a single formal
algorithm. Think about how you would:

- Share 25 buttons equally among 4 people.

- Find how many shirts with 4 buttons each can be made with 25
buttons.

- Put 25 people into taxi cabs holding at most 4 people each.

- Make shirts from 25 yards of material needing 4 yards each.

- Share 25 yards of material among 4 people.

Make a picture to indicate how you would carry out these questions. You
will see that they require different physical actions. This rich variety of
physcial activities is all condensed into the formal arithmetic operation of
dividing 25 by 4. This is both the power of abstraction, as well as the pitfall.
Also, the remainders mean different things in the different contexts. The
distinctions of .25, 1/4 and r=1 do not fully convey these differences.



Numbers and Lines

A. There are several ways to think about what the number 3 on the number
line might mean. )

1. The name of a point
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3. A translation to the right of 0 by u repeated 3 times.
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0 3
u= = 3= T (T,(T,0))
4. A scalar magnification by 3 of the unit u.
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5. Any directed segment with length 3 and direction right.
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It is important to note that in different contexts we will be using different
meanings for the numbers on the number line: sometimes the name of
points, sometimes lengths, sometimes vectors.



B. Numbers on the line have a history: they may be constructed from
different actions.

Given a segment or position, how do we assign a number?
Given a number, how do we assign a position or segment?

A good place to start is to assign unit length u to some segment.! The
procedure for placing number coordinates on a number line intrinsically
determines natural operations on these numbers. Starting from a 0 point
and a unit u, we can build up the coordinate numbers on the line by

translating or by dilating:

Repeatedly laying this segment end to end, we can get all segments whose
length's are whole number multiples of u. Intrinsic to this process of
building whole number length segments is the geometrical operation of
translation.

! u=' 3 — —— >

0 lu 2u

It is important here to think of the numbers not only as static entities, but
as processes: each number carries its history with it. For example, if we
think of 2 as the position on the line gotten by translating by two units from
0, then we have:

2 = Tu(Tu(0))

Since these numbers are built by translating, a natural operation between
these LN's is to translate one by the other: this is the same as combining by
composition the two processes used to get the numbers from the unit u. If
we look at the results, this operation corresponds in the arithmetic world to

addition. a+b = Th(a)

To.add two segments a and b, a b
simply place them end to end.

This is the same as translating
one by the other:

You can easily show that Ta(b) = Th(a) (= a point or coordinate!)

1 Note that we are assuming Euclidean space here, and particularly that there
is no special segment we should call 1, and that the space is uniform.



C. Linear Numbers as Dilations and rotations of u.

We can construct the numbers or coordinates by dilating or magnifying or
scaling the unit.

#

In order to scale we need a unit.

We need to magnify in order to find rational segments or coordinates
without re-scaling.

We need to go off of the line to magnify or dilate.

Think about what scaling or magnification means. How does M3u) differ
from repeated addition of u? In what sense is M3(u) the same or different
than u+u+u? The end position is the same, but the process is very
different.

3u as repeated translation
3u
3u as scalinguby 3

Notice that scaling by 3 is not necessarily the same as repeatedly adding
something to itself three times.

For example, think about the difference between 3 cookies, and one large
cookie three times as big as an original. These are very different processes.

AR
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The analogy for repeated addition is to have three chocolate chip cookies.
The analogy for magnifying, is to have a chocolate chip cookie three times
as big. Notice that this last phrase "three times as big" is also ambiguous
unless we define our term more carefully. Three times as big may mean
three times the radius, or the volume!

One student, asked to draw a picture of .
a cookie three times as big drew the same 3x =
cookie: "Its three times as thick" she said.



D, In order to place the rational numbers we have to go off of the line.

How do we determine the segments whose lengths will be fraction
numbers? Translating the unit will not get us the coordinates on the line
which are between whole numbers. If we already have a number line with
the whole number multiples of u, we can rescale to find 1/3. But rescaling
means changing our unit. We will find no new coordinate points in this
way.

" ; N\
T T - /
0 lu 3u Rescaling
changes
the unit

0 173 1

In order to locate rational numbers from the unit without rescaling we can
dilate or scale the unit®. How do we scale or magnify a segment? If we
want to magnify a unit by 3, for example, we need to know the meaning of
the scaling factor 3 in the geometric sense.

a. We first need to have two segments which we know are in a 3:1 ratio.

b. One test of this ratio is that 3 copies of the smaller fit onto the larger.

c. In this sense we do need to have established whole number multiples of
some segment by a repeated addition process.

So we shall assume we have segments representing all whole multiples of
our unit. To get fractions without re-scaling it is natural to use the
properties of similar triangles. Suppose,that we wish to construct the
segment corresponding to m/n for any whole m and n. Here are two
procedures.

2 We could also successively approximate the position of 1/2, for example, by
picking a point between 0 and 1 and measuring which was closer. Then place
a point symmetrically near the other end and again pick a point. etc.
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Thus we can construct segments of any rational length. The similar
triangle procedure is essentially the operation of scaling, which is thus
built into the construction of the rational number segments.

3u

lu

N

0

\,
2/3 /
1u 2u

We now have two kinds of numbers to work with. We have lengths of
segments expressed in numbers of units. We also have ratios of segments,
the scalar numbers multiplying the unit--represented as triangles.



"Irrational' numbers.
In order to construct segments of irrational length, ie. those which are not

commensurable with the rational length segments, we need to use other
procedures--which are finite for only a small class of special numbers such

as¥2 and ;.

N D

Diagonal =2 Roll out unit circle to get segment I

In general, in order to place the irrational numbers, we will have to use a
limit procedure. However, if we assume we already have all size segments
at our disposal, we can lay out these segments in size order by comparison
to u. In this case, there is a different meaning to "ratio”. Evey segment A
will form a rectangle with u, and the ratio of A to u is measured by the
angle of the diagonal. See the discussion later on in the section on different

meanings of multiplication.

Numbers to the left of 0.

Numbers on the line have an intrinsic direction. When we call the
numbers to the right of 0 positive numbers, we mean geometrically a
direction along the ray that we can call 0 degrees.

TRANSLATION: We can build a number to the left of 0 as a translation
followed by a reflection about 0 of 0. The operation of subtraction means
rreflecting and then translating. This difference in the order of operations
helpgD to distinguish subtraction from the construction of the opposite
numbers.

As an example, we can now make sense of a problem like 5-(-8). To subtract
is to reflect the number and translate. But -8 is already a reflection about 0.
So -(-8) means translate 0 by 8u, reflect, reflect. The result is the same as
translating only, so 5-(-8) is the same as 5 translated by 8 or 5+8.

DILATION: "Positive” numbers are found by dilation: 3 means D3(u). We
will use the notation <3,0> for the number +3. This is more cumbersome
notation than +3, but will make much clearer the history of the number: 3
is a dilation by 3 and rotation by 0 of w.



To construct the numbers to the left of 0 by dilation--whether we think of
these as names of points or directed segments--rotate by 180 degrees. Thus,
the number <3, 180> is the unit segment u dilated by 3 and flipped.

4

Ou
<3,180> is the way of
writing a dilation of u by
3 and rotation by 180.
1
<3,180> 0

[Note: Gauss, in the 19th century, tried to come up with a better terminology than
"negative”. He wanted to call the positive numbers "direct" and the opposites "indirect",
while those to the side he wanted to call "lateral numbers".

So, intrinsic to the construction of the numbers as scalar multiples of a unit
is the dilation or scaling transformation. <8,0> means the unit segment
dilated by 8, or the position on the number line that 1is mapped to by
dilating the coordinate system by 8. <8,180> means a dilation and rotation
(convince yourself that these operations commute, whereas translation and

rotation do not.)

0 |0>

NOTE: we should emphasize here that when we think of numbers as
actions, they operate on the whole line. For example, when working with
inequalities, 3<5 means that 3 is to the left of 5. What operations on the
whole line will preserve the order of the line and which will not? Of the
basic operations, only multiplying or dividing by -1 will reverse the order--
because it switches the direction.



D. Intrinsic to the construction of numbers is the basis of the operations
which can be used to relate the numbers.

When we want to perform operations on or between the segments, we can
translate the geometric operations into arithmetic by thinking about the
operations that are intrinsic to the way we built the numbers. Each
number comes with its own history. The numbers we assign to geometric
objects are not only static objects, they also stand for processes, and actions.

For example, if we build 3u from u by repeated translation, then 3u means
a translation of u end to end three times. To combine 2u and 3u we compose
these actions to get 5u-- a translation of u 5 times end to end, or placing 3u
and 2u end to end. Thus we correlate the geometric operation of translation
with the arithmetic operation of addition.

For the segments like 1/2(u) and 2/3(u), the operation built into the numbers
is scaling--not translation. So it is much more natural to compose or
combing fraction segments by multiplying then by adding. (1/2)(2/3) means
a composition of a 1/2 scale and a 2/3 scale. This can be done with similar
triangles, and is easily shown to be equivalent to a 1/3 scale, giving us the
answer 1/3(u).

At this point it is important for the reader to think about the following:

Given two segments a and b, what do we mean by the product ofa and b (in
other words, what does the arithmetic operation of multiplication mean in
the geometry world.)

Multiplication is more complicated than addition. There are several
meanings for the multiplication of LN's geometrically, even though the
numerical value of a product is formally easy to find for whole numbers.

a. Multiplication as repeated addition: 3x2 means 2 taken three times.
Geometrically, 8b as repeated adding means put segment b next to itself 3
times. To multiply b by 8 we translate (compose the translation) 3 times:

b

b. Multiplication as scalar multiplication: 3X2 means the LN 2u magnified
3 times. Here, the 2 is not the same kind of number as 3. The second item
may be a geometric figure. The natural way to scale is to use similar
triangles. We have to think of the number 3 as a ratio 3w/1lu and apply it

(the triangle) to 2.

Given two segments a and b, a
a triangle with sides a and b
gives us a model for ratio.




Let us call a triangle such as constructed above with sidesaandb a
triangle with ratio a/b. Any other triangle similar to this one will also have
the ratio a/b. If we have a unit length u, we can "apply" a triangle to u to

construct a length a/b(u) in two ways. ,
3u 6u %
/ o u
: \-_2_1-1-—-———*-\,/"""“—-———__-1_’-
u 6u

We need a unit to multiply, but we DO NOT need a unit to scale a segment ¢
by a scalar a/b. Note the similarity of this operation to the method we used

to construct the "rational” segments.

This distinction between the two terms in the multiplication helps us to see
why the natural order operations is multiplication before addition.

The expression 2 + 3x5 means 2u + 3x5u.
2 means 2u, 5 means 5u, but 3 means a scalar.
Therefore, 3x5u is one whole term.

An important question here, is "What does it mean to multiply (as scaling)
by an irrational number?" You should see that, again, it depends on the
definition/history of "irrational".

¢. Another geometric meaning of multiplication of A x B is the area of a
rectangle with sides A and B. Notice that we are trying to define operations
on LN's, but the result is not an LN. Area is in terms of square units. Also
certain operations will work on the area AB which will not work on the
pure number AxB without some care. For example, square roots of area
make sense, but square roots of lengths do not, as we pointed out earlier.

2" x 3" =6sqin.

But how do we get
linear units?

Three observations about multiplying as Area.
-No unit is needed to represent the product: the rectangle as a region is

invariant under change of units.

-We may multiply any two segments in this way, regardless of whether they
are commensurable or not (ie irrational).

-Multiplying increases dimension in this model. Powers more than 3 are
hard to visualize, as are fractional dimensions.

H



Two problems with the number line is that there is an implied direction, and there is
length or "spread” between numbers. The latter problem is related to the need for a

unit.

i. Consider 2 x3 =6. If we correlate 2 with a point on the number line as 2", and 3 as
3", then we ask for the point on the number line which represents 2" x 3" we are stuck:
because the meaning of the x is not clearly defined. Should the answer be 6 square
inches? If so, how can we put this on an inch-unit number line?

=+
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ii. Consider the geometric process: "given a region with a certain area, find the side
of a square whose area is equal to the given region." This is a well-defined process
for many regions. We model this process within the arithmetic world by square-roots,
and we write / 4 = 2 without worrying about the original context or units. However,
when we translate back to the geometry world, and 4 is a number on the number line
representing a length, we cannot pur the /4" on a number line--this item would be 2 but

have dimension 1/2!

d. Multiplication as area does not satisfy the condition that we require the
product to be the same kind of number as the original. In order to turn the
geometric multiplication as area into a closed operation on LN, we have to
show how to translate the quantity of area AB into an LN. This demands a
suitable unit U, and the length of AB will depend upon the unit U.

There are at least three good pictures for finding the segment ab--both
using similar triangles. Convince yourself that these pictures work:

or

b QL
I ab

Here is another way to do it, with rectangles and similar triangles:



ab

Construct rectangle a by b.

Then extend side a by length u.

Complete the rectangle u by b.

Extend the bottom line b.

Draw the diagonal from the upper left corner of rectangle u by b. Complete

the picture to get length ab.

ASIDE:

If we do not FIRST import the rational numbers from the arithmetic world,
then we can simply construct ALL possible segments from ratios of existing
segments APPLIED to the unit segment we have chosen. We do not even
need to know if the segments a and b are commensurable. We can order
the ratios easily by a diagonal test:

b
d / We see that a/b < c/d because the diagonal
of rectangle ab makes a smaller angle
c 8 | with the horizontal than cd.




E. Multiplication of plane numbers.

The natural operation for numbers constructed by dilation and rotation is a
composition of dilations and rotations.
For example:

<8,180> = Rigpo0Dg (u) and <1/2,180> = Rigp o0 Die ()

The natural operation between <8,180> and <1/2,180> is to compose rotations
and dilations. The result is <4, 360> = <4,0>.

Don't think of 2 as a static item, but as dynamic: a verb or operation.

We should also think of the operation of multiplying by <2,0> or by <2,180>
as an operation on the whole number line.

<4 180> 0 <4 0>
llllll_.l]ll[lllllllJllllJ
Multiplying by <2,0> is
the same as scaling by
/ 2 around the origin.
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7 Y 5 <8,180><4,180> 0  <4,0>
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/ <4,180> O <4,0>
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QQ“S’ " Muliiplying by
X r <1,180> is the same as
U rotating 180 degrees
Q‘ el around 0.
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<4180> 0 <40
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Multiplying by <2,180>
is the same as scaling
by 2 around the origin
and rotating 180.

A\
e
<8,180> <4,180> g <4,0>

This operation of rotation and dilation is easily seen to correspond to the
arithmetic operation of multiplication.



F., Multiplying by - as rotation by 180.

We now have a meaning for the arithmetic operation of multiplyig by a
"negative" number. The order of operations is different for 2 x -3 and for -2
x 3, but the result is the same: P

2x-3 =<2,0>0<3,180> = Ro(D2R180D3(w)))= RigoDe(u) = <6,180> = -6

-2x 3 =<2,180> 0 <3,0> = R1g0(D2RoD3z(w))))= R1gp(De(u) = <6,180> = -6

For perhaps the first time, we see a natural reason why the product of two
"negative" numbers is positive--intrinsic to the meaning of negative
number.

-2 x -3 = <2,180> 0 <3,180> = R1g0(D2(R180(D3(w)))= Raeo(D3(u) = <6,0> = 6

Students should check and see all these operations on line diagrams such
as the ones above. For more detail, start with u and perform the operations.

Notice that although <2,0> 0 <4,0> gives the same result as <2,180> o
<4,180> the processes are very different. The first might be like starting at
Chicago and flying to NY and then to London. The second might be like
starting at Chicago, flying to LA, and then to London. This is a particularly
important point when we look at the whole plane.
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G. Plane Numbers

The plane numbers are built up from the Unit u by rotation and dilation.
The natural operation is a composition of these operations. This will also be
a natural extension of the arithmetic operation cf multiplication.

There is no intrinsic reason we must restrict ourselves to numbers in the
particular direction we have called 0 (or 180). We can take a ray in any
other direction, such as 30 degrees, and find a whole ray full of numbers.

For every angle, such as 30, <[303
we have a whole number ray.
<30>
For every positive number such as N
3, there are an indefinite number ‘
of numbers 3 units from our origin. 0>
<3270>

A model for this kind of number system is to think of directions. Perhaps a
better notation for angles would be something like 1/12 turn instead of 30.

Plane Numbers as Solutions to Equations.

In order to provide another motivation for moving off of the line, we will
look at the solutions to some simple equations in our new notation. [NOTE:
This sequence is inspired by David Bock. ]

The solution of linear equations suggests the consideration of negative
numbers--for example in trying to solve a simple equation suchas X +9 =
4. Tt is easy to solve subtraction problems in the translation construction of
numbers, but it is neither obvious nor easy to add and subtract numbers in
rotation/dilation notation. The +,- number system is made for addition and
subtraction. Historically, mathematicians did not want to consider the use
of negative numbers until the solutions of cubics made the use of plane
numbers realistic, and only then was the use of negative numbers (as
rotations) accepted as well.

Consider the second degree equation x2=16. In our new notation, we are
asking for < , > such that:

<, >0<,> =<160>

e



The rotation and dilation model is natural for multiplying. We find:

<4,0> 0 <4,0> =<16,0>.
but also <4,180> 0 <4,180> = <16,560> =<16,0>
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<4,180> g% <«40> <16,0>

So we have two solutions to our problem. Note that in order to emphasize
that <4,0> means a process of dilating the unit, we put in the unit segment
also as our starting position. ie:

Start with u, dilate by 4 two times.
Start with u, dilate by 4 and rotate by 180 two times.

Now continue. There are two solutions to
<, >0< , > =<4,0>

<2,0> 0 <2,0> =<4,0>.
<2,180> 0 <2,180> = <4,360> = <4,0>

So far we have been able to satisfy our equations with numbers from the
line.

77



We usually think of the number line as "all” the numbers. But the number
line is not a rich enough environment to hold the answer to these problems.
Here we have a whole plane full of numbers.

To see this, thinkabout < , >0 < , > = <4,180> ?
Students will not usually take a long time to see that:
u--—> <2,90> —--> <2,90> 0 <2,90> = <4,180>.

and also
u > <2,270> ---> <2,270> 0 <2,270> = <4,540> = <4,180>

TEH T T Vv v 1o TrTrrrrryrrrrrrrr T Fr o T

<4,180>

Now keep finding square roots of <2,90> and so on. There are a potentially
infinite number of routes from Chicago to London.

This approach gives us a natural introduction to numbers filling up the
whole plane. We can continue to explore the geometric meaning of plane
number concepts, and then show that these geometric operations are
equivalent to operations on complex numbers as we usually define them.



H. Multiplying Plane Numbers as composition.

To return to our sequence of ideas, each plane number has length and
direction. Having constructed plane numbers by dilation and rotation, and
seen a motivation from solving equations, we can now define our operations
between plane numbers intrinsic to their construction in this way.

- AoB
<6,105>

We multiply plane
numbers using the
transformations built

into their construction.
<3,30> x <2,75> = <6,105>.
This product is found by

B
275> A dilating by 2 and 3 and

<3,30> rotating by 30 and 75.

Practically, it is found

ouv vy
<10>

by "applying the
triangle AOU to OB.

Let us look a little more carefully at our operation and see how it grew out
or our construction of the numbers in the first place.

A
<330>

Z

ouvu
<10>

AoB
<6,105>

B
275> A
<3,30>

ouvvyU
<10>

Plane number A has intrinsic to it a whole
triangle. The important features of the
triangle are the ratio A/u =3 and angle

AQU = 30. This triangle represents A as an
ACTION, and we can apply this triangle to B
as an operation--by keeping the ratio and
angle the same.

B is another plane number. When we
operate on B using A, we applyto B a
triangle similar to UOA: matching up
UO to BO. The result is directed arrow
AoB, whose length 6 is the composite
of the dilations 2 and 3, and whose
angle is the composite (sum) of 30 and
75.

19



41?75> Plane number B has intrinsic to it a whole
triangle. The important features of the

A triangle are the ratio B/u =3 and angle
| BOU =175.

O U k10>
BoA When we operate on A using B, we
<6,105> apply to A a triangle similar to UOB:

matching up UO to AO. The result is
directed arrow BoA, whose length 6 is
the composite of the dilations 3 and 2,

A d wh le is th £75 and
4’30> g?).woscangcm € sum O an

b

oul
<10>

We emphasize here that an origin and a UNIT u is needed to multiply. We
need not have the unit horizontal, but in order to multiply by plane number
A we need to use A/u and to use the direction of A based on u. What we are
saying, is that mulplication is really a proportion. A:u=AB:B OR B:U =
AB:A. Three of the terms in the proportion are known, and the other (AB)
is to be found. This has direct consequences for our linear operations as

well!

v

Exercises:
a. For each plane number A we can define its length 1Al , the length of the vector, as

the distance to the origin. In the dilation/rotation notation for plane numbers the
length is always positive.

b. Draw all plane numbers with length 1. Draw all plane numbers with direction 60.
What happens when you multiply any plane number by a plane number with length
1? By a plane number with direction 0, or 180 or 90? What is the effect as a
geometrical transformation?

c. Find ways to get <1,180> by squaring a plane number. Draw pictures. How many
ways can you do it? '
d. Draw pictures for powers of <1,90> such as 2,3,4 ...100. What patterns do you
notice?

e. Play with multiplying numbers z which are on, in, and outside of the unit circle:
what effect does multiplying by z have in the different cases? Think about numbers
on the unit circle to start with.

f. Show that translation works as the geometric equivalent of adding for plane
numbers. show that this is the same as "vector" addition--putting two vectors
beginning to end.

g. Draw pictures to show how to divide a plane number b by a. Think about the four
terms of the proportion with a, u, b and v/a.

h. Check that all rotations and translations preserve distance and angles, and thus
preserve congruence.

Check/show that magnification/dilation/scaling preserves the angles of a given
figure: that is shape but not size. Which of T, D, R commute with

each other?
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X. Plane Numbers built up from Addition/Translation

We may also build the plane numbers up by addition/translation. Consider
all the numbers on two number lines which inte:sect at their common 0
point. Let the lines have units u and v, where u and v are directed unit
segments on the lines. We think of the numbers on the lines as scalar
multiples of u and v. Plane numbers can be considered as the set of all
vector sums au + bv .

Using this construction of the plane numbers it is easy to add numbers, but
harder to multiply. If we use the standard notation that one of the axes is
the linear (Real) numbers with unit 1, and the other axis is perpendicular
to the original with unit designated as i, then we have the standard
rectangular representation of “complex” numbers. We use notation (a,b) =
al + bi or just a+bi.

i=<1,90 i=<1,90> is a plane

> number whose square
is <1,180> ie -1

\_/1=<1,0>

We now need to show the equivalence of multiplication as constructed from
rotation and dilation and multiplication by the distributive law on
(a+bi)(c+di).

a. Start from the MoR construction, and the corresponding meaning of
multiplying plane numbers. It is easy to see that <p,r>o0<q,s> is the same
as pq(<1,r>0<1,s>). So we really only need to show that <1,r>0<1,s> will give
the same result as multiplying the corresponding rectangular coordinate
vectors [a,b] and [c,d] .
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RoS is the product of
the two vectors R and
S on the unit
circle--soitis a
rotation of S by the
angle of R.

Therefore, by AAS,
the shaded triangles
are congruent.
(triangle TyO and
Sx0).

0yl = 10xI=lc! . Thus the
vector oy, in the opposite
direction from R and length
lcl is equal to cR. This is
ca+bi).

ITyl=ISxl=1dl . Thus the
vector yT, in a direction 900
to R and length Idl is equal to
d(1,90)oR.

Notice that (1,90)oR has
coordinates (-b,a), which is
-b+ai. SoyT =d(1,90)oR =
d(-b+ai)

Thus RoS is T, which is oy +
yT as vector addition, which
is c(a+bi) + d(-b+ai).

This is the same result one
gets by multiplying
(a+bi)(c+ci) by distributive
law, and usingii=-1.



b. To show the equivalence in the other direction, draw pictures for the
following series:

Start with vectors a+bi and c+di. 4

1. Show that multiplying by [a,0] magnifies but doesn't rotate b+ci.

2. Show that multiplying by i rotates by 90 but doesn't magnify.

3. Show that bi(c+di) rotates by 90 and magnifies by b

4. Now write (a+bi)z = az + biz [these are equal in the rectilinear sense.] See that az and
biz must be at right angles to each other (by 1. and 3. az is in direction z, biz is 90° to z).
Also az is a magnification of a by |z!, and biz is a magnification of b by lz|. So the
rectangle az by biz is similar to the rectangle a by bi. So the resultant az+biz, which is
(a+bi)(c+di) is a magnification of (a+bi) by |z| and a rotation by the angle of z.

)



